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1 OVERVIEW

This Final Technical Report constitutes the completion of the PETTT Special Project BY14-
020SP.

1.1 Problem of Interest
Slender curved structures such as shallow arches and cylindrical panels are commonly used
structural components in aerospace engineering. When these curved structures are subjected to
transverse loads, they can be susceptible to snap-through buckling where a structure suddenly
jumps from its initial configuration to a remote coexisting equilibrium configuration (Figure 1).
Such processes lead to large and frequent stress reversals that can significantly exacerbate the
fatigue failure [1-6].

Figure 1. Snap-through buckling

This report focuses on investigating the static and dynamic snap-through of slender curved
structures. The report first presents an analytical method to study the nonlinear static buckling
and post-buckling of shallow arches with geometric imperfections. Then an efficient alternative
is proposed to quickly determine the dynamic snap-through boundaries of shallow arches and
cylindrical panels.

2 ACCOMPLISHMENTS
In this section, an analytical model is first presented to analyze the nonlinear stability and remote
unconnected equilibrium states of shallow arches with geometric imperfections. The exact
solutions of the equilibria and critical loads are obtained. Unlike many previous studies, these
solutions can be applied to arbitrary shallow arches with arbitrary geometric imperfections. Then
a simple scaling approach is introduced and applied to identify the similarities of snap-through
boundaries of half-sine arches, parabolic arches and cylindrical panels.

2.1 Arches with Geometric Imperfections

The nonlinear equilibrium and buckling equations are first derived for the simply supported
shallow arch with an arbitrary initial shape and subjected to an arbitrary vertical load *f  (Figure
2).
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Figure 2. The shallow arch subjected to a transverse load

The material of the arch is assumed to be elastic, isotropic and homogenous. A large
displacement Euler Bernoulli beam theory is used to model the nonlinearity. In Figure 2, E
represents the Young’s modulus; A and I denote the area and moment of inertial of the cross
section respectively; L is the horizontal projection of the arch.

2.1.1 Equilibrium Equations
The equilibrium states of shallow arches can be described by the following differential equation:

Here, y and y0 are the deformed and initial configurations, the subscript denotes the partial
differentiation with respect to the horizontal position, f * denotes the external load, and P *

represents the axial force that can be calculated as:

Eqs. (1) and (2) can be written in dimensionless forms as following:

p =
1

2p
(u,x

2 - u0,x
2 )dx

0

p

ò (4)

EI(y - y0 ),xxxx - P * y,xx = f * (1)

P* =
EA
2L

(y,x
2 - y0,x

2 )dx
0

L

ò (2)

(u - u0 ),xxxx - pu,xx - q = 0 (3)
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Here, (u,u0 ) =
1
r

(y,y0 ), x =
p
L

x, r = I
A

.

Utilizing the Fourier sine series, u , u0 and q can be written as:

where,

The nonlinear equilibrium equations can then be obtained by substituting Eqs. (5) and (6) into
Eqs. (3) and (4):

p =
(a k

2 - b k
2 )k 2

4k=1

¥

å (8)

2.1.2 Buckling Equations
The tangent stiffness of the system becomes singular when the structure loses stability. The
tangent stiffness matrix of the system can be obtained from Eqs. (7) and (8):

where d nm  is the Kronecker delta function. When the tangent stiffness matrix is singular, its
determinant equals zero. Therefore, the buckling equation can be derived as:

 Here, g nm =
2n2 (n 2 + p)d nm

n2m 2 .

u(x) = a n sin(nx)
1

¥

å , u0 (x) = b n sin(nx)
1

¥

å , q = qn sin(nx)
1

¥

å , (5)

qn =
2
p

q sin(nx)dx
0

p

ò (6)

Rn = 0 (a n - b n )n 4 + pn 2a n - qn = 0, n = 1,2,... (7)

K nm =
¶Rn

¶a m

=
n 2m 2

2
a na m + n 2 (n 2 + p)d nm , n,m = 1,2,... (9)

det K nm = P
k=1

¥

g kk + (a n
2 P

k=1
k¹n

¥

g kk )
n =1

¥

å = 0 (10)
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2.1.3 Closed-form Solutions
In this part, the closed-form solutions to the equilibrium and buckling equations are derived for
shallow arches subjected to a concentrated load at the midspan. Without truncating the Fourier
sine series, the expressions of exact solutions are obtained.

2.1.3.1 Equilibrium States

Express the dimensionless transverse load q with respect to the loading parameter l  as

q = -
p
2
ld (x -

p
2

). Here,
p
2

 is a scaling factor for the convenience of following derivations,

and the loading parameter l  is positive when the external load is in the negative y direction
(Figure 2). Therefore, the load series qn  can be obtained as:

Substituting the load series qn  into the Eq. (7) the mode coefficients a n then satisfy:

Therefore, the mode coefficients for the equilibrium states can be solved as

Substituting a n into the Eq. (8), a quadratic function of the loading parameter l  with respect to
the non-dimensional axial load p is obtained:

Here, A( p)M, N , B( p)M ,N  and C ( p) are defined as following

q2 i+1 = (-1) i+1l , i = 0,1,2,...
q2 i = 0, i = 1,2,...

(11)

(2i + 1) 2 ((2i + 1) 2 + p)a 2 i+1 = (-1) i+1l + b 2 i+1(2i + 1) 4 , i = 0,1,...
                     ((2 i) 2 + p)a 2 i = b 2 i (2i)2 i = 1,2,...

(12)

a 2 i+1 =
(-1) i+1l + b2 i+1(2i + 1)4

(2i + 1)2 ((2i + 1) 2 + p)
, i = 0,1,...

a 2 i =
b2 i (2i)2

((2i) 2 + p)
, i = 1,2,...

(13)

A(p)2,2l
2 + B(p)2,2l + C(p) = 0 (14)

A(p)M ,N =
1

(2i + 1)M ((2i + 1)2 + P)N
i=0

¥

å (15)
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The solutions of the loading parameter l  are

The vertical displacement at the midspan can be obtained by substituting a n to Eq. (5):

Eqs. (18) and (19) can be utilized to obtain the equilibrium states for different values of p.

2.1.3.2 Critical Loads

When b 2 i ¹ 0 , for all i, we obtain that p ¹ -(2 j) 2 and hence no bifurcated equilibrium branch
exists. Therefore, Eq. (10) is satisfied only at limit points and can be further simplified to:

Substituting a n into Eq. (20), the limit-point buckling load can be obtained as:

2.1.4 Application to Half-sine Arches
In this part, the previous derivations are applied to half-sine arches with an initial dimensionless
height h=1b  and asymmetric geometric imperfections he ii 22 =b  ( 3,2,1=i ). Since the
imperfection mode coefficients i2b  appear with a quadratic form in all related expressions, the
sign of the coefficients e2 i  does not influence the results and only positive values of e2 i  are
considered in the following study. To investigate the effect of the first three imperfection modes,
the non-dimensional height of the perfect arch is chosen as 5.13=h . This value is chosen to
ensure that at least three pairs of bifurcation paths exist for the perfect structure. Note that the

B(p)M ,N =
(-1) i+12b2 i+1(2i + 1)M

((2i + 1)2 + P)N
i=0

¥

å (16)

C(p) =
b i

2i 6

(i 2 + p)2
i=1

¥

å - b i
2i 2 - 4 p

i=1

¥

å (17)

l =
-B(p)2,2 ± (B(p)2,2 )2 - 4A(p)2,2 C(p)

2A(p)2,2

(18)

(19)

1 +
a n

2

g nnn=1

¥

å = 0 (20)

A( p) 2,3l
2 + B( p)2,3l +

b ii
6

(i 2 + p)3
i=1

¥

å + 2 = 0 (21)
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physical rise-to-span ratio of the arch is equal to Lhr / . Therefore, the dimensionless height
5.13=h  represents shallow arches when the value of Lr /  is small. The analytical results are

compared with the finite element analysis (FEA), which uses a physical rise-to-span ratio that is
0.0065 when 5.13=h .

2.1.4.1 Equilibrium States

Figure 3 shows the equilibrium states represented in the parameter space ),( lmiduD  for the
perfect arch with 5.13=h  and the imperfect arch with ,03.02 =e 005.04 =e  and 001.06 =e .
The solid and dashed lines represent the primary and bifurcated equilibrium states obtained from
Eqs. (18) and (19). The circles and squares denote the primary and bifurcated equilibrium states
obtained from the FEA. All finite element simulations are performed with the large-deformation
Euler-Bernoulli beam element in the Finite Element Analysis Program (FEAP) [7]. The
numerical procedure introduced in [8] is adopted to obtain the bifurcated equilibrium states in
FEA.

Figure 3a shows that the perfect arch with h=13.5 has a complex continuous primary equilibrium
path with multiple loops and three different bifurcated equilibrium paths. On these equilibrium
paths, 12 critical points exist, including six limit points (locations with horizontal tangents, L1-
L6) and six bifurcation points (locations where the primary and bifurcated paths intersect, B1-B6).
The results obtained from the analytical solutions and the FEA match well. When the arch has a
multiple-mode imperfection with non-zero values for all coefficients ,2e 4e  and 6e  (Figure 3b),
all bifurcated equilibrium paths, which exist for the perfect arch, disappear and six more limit
points appear instead. Unlike the perfect structure, there are a large group of remote unconnected
equilibrium states, represented by gray solid lines in Figure 3b, which cannot be obtained by the
FEA if a proper perturbation is not performed. It is in fact difficult to identify whether the
equilibrium states are connected or not for the imperfect arch when they are presented in the
space of ),( lmiduD . An alternative way to represent the equilibrium states will be introduced.

(a) (b)
Figure 3. The equilibrium states of half-sine arches represented in the space of ),( lmiduD : (a) No imperfection,

(b) 001.0and,005.0,03.0 642 === eee .
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Since the parameter space ),( lmiduD  does not give a clear illustration of the equilibrium states of
the imperfect arch, it is recommended to represent the equilibrium states by projecting them into
the space of the axial load p and the external loading parameter l . It is observed that this
representation of the equilibrium states is very effective in describing the equilibrium states and
critical points. Figure 4shows the same equilibrium stats that are plotted in Figure 3. Here, the
primary and bifurcated equilibrium states obtained from the proposed formulas are also denoted
as solid and dashed curves respectively. The circles and squares again represent the primary and
bifurcated equilibrium states obtained by the FEA without initial perturbation. In the parameter
space ),( lp   (Figure 4), the limit point can be identified from the local maximum or minimum
with zero tangent (L1- L6 in Figure 4a) while the bifurcation point can be identified as the
location where the primary and bifurcated paths intersect (B1-B6 in Figure 4a). In addition, it can
be clearly seen from Figure 4b that a small imperfection of the mode )2sin( xi  ( 02 ¹ie ) makes
the bifurcated path of this mode ( sin(2ix)) disappear and the primary equilibrium states split at
the location 24ip -= . This split generates one more pair of limit points and one group of remote
unconnected equilibrium states (gray curves) that can include looping paths with multiple limit
points.

(a) (b)
Figure 4. The equilibrium states of half-sine arches represented in the space of ),( lp : (a) No imperfection, (b)

001.0and,005.0,03.0 642 === eee .

2.1.4.2 Critical Loads

In this part, the influence of the multiple-mode imperfection on all critical loads including those
of the remote unconnected equilibrium is investigated. From Figure 4, it can observed that two
pairs of critical points exist for 22 )12()12( --££+- ipi  where 3,2,1=i . In the following
section, the ranges 19 -££- p , 19 -££- p , and 19 -££- p  will be referred as first, second
and third ranges respectively.

Figure 5 shows the variation of the critical loads with respect to the multiple-mode imperfection.
The solid lines (black and gray) represent the limit loads obtained from the analytical
expressions. Among these results, the gray curves denote the limit loads of the remote
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unconnected equilibria. The circles represent the limit loads obtained from the FEA by
performing multiple simulations. In this case, all six pairs of critical points are limit loads and
five of them are from the remote unconnected equilibria. When the multiple-mode imperfection
e increases, the limit loads in all three ranges decrease. The limit loads in the second and third
ranges (Figure 5b and 5c) vary much faster than those in the first range (Figure 5a).

(a) (b) (c)
Figure 5. The critical loads of half-sine arches with multiple-mode imperfection 642 eeee ++=  where

3/642 eeee === :  (a) 19 -££- p , (b) 925 -££- p  and (c) 2549 -££- p .

2.2 Scaling of Snap-through Boundaries

To reveal the relationship between different dynamic snap-through boundaries, a simple scaling
approach is proposed: the forcing amplitudes are scaled by the static buckling load of the
structure and the forcing frequencies are scaled by the linear natural frequency of the first
symmetric mode. A schematic representation is shown in Figure 6. Here l  represents the
dynamic forcing amplitudes and crl  denotes the static buckling load; w  represents the excitation
forcing frequencies and 1symw  is the linear natural frequency of the first symmetric mode.

Figure 6. Scaled snap-through boundaries of six half-sine arc
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2.2.1 A lower-order model for shallow arches
The equation of motion is first derived for a simply supported shallow arch subjected to a point
load at midspan (Figure 7). The material of the arch is assumed to be elastic, isotropic and
homogenous. A large displacement Euler Bernoulli beam theory is adopted to model the
geometric nonlinearity. In Figure 7, r  denotes the density; E represents the Young’s modulus; A
and I denote the area and moment of inertial of the cross section respectively; L is the horizontal
projection of the arch.

Figure 7. A simply supported shallow arch subjected to a point load at its midspan

The differential equation describing the motion of the arch is as follows:

Where, y and y0 are the deformed and initial configurations, the subscripts “,t” and “,x” denote
the partial differentiation with respect to the time and horizontal position, f * denotes the
external load, d * (x) is a dimensional Dirac delta function, and P * represents the axial force that
can be calculated as:

Eqs. (22) and (23) can be transferred into the dimensionless forms as following:

p =
1

2p
(u,x

2 - u0,x
2 )dx

0

p

ò (25)

rAy,tt + EI(y - y0 ),xxxx - P * y,xx = f *d * (x - L
2

) (22)

P* =
EA
2L

(y,x
2 - y0,x

2 )dx
0

L

ò (23)

y,tt + (u - u0 ),xxxx - pu,xx = qd (x -
p
2

) (24)
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Here, (u,u0 ) =
1
r

(y,y0 ), x =
p
L

x, r = I
A

, t =
E
r
p 2r
L2 t , and q =

f * L3

p 3EIr
.

Utilizing the Fourier sine series, u , u0 and qd (x -
p
2

) can be written as:

where,

Let the external load q be written in terms of the loading parameter l  as q = -
p
2
l . Here,

p
2

is a scaling factor for the convenience of following derivations, and l  is positive when the
applied load is in the negative y direction (Figure 7). Therefore, the load coefficients qn  is

The equations of motion can then be obtained by substituting Eq. (26) into Eq. (24):

2.2.2 Half-sine Arches
For a half-sine arch with an initial rise h, the mode coefficients of the initial configuration h=1b
and 0=kb  (k>1). Before the transient analysis, it is useful to perform the static buckling
analysis to obtain the static buckling loads that will be used in the scaling of dynamic forcing
amplitudes. The equilibrium and static buckling equations can be derived from Eq. (7) by
neglecting the inertial effect terms a n ,tt .

Figure 8 shows the equilibrium paths of half-sine arches with six representative rises. The solid
and dashed curves represent the primary and secondary equilibrium states obtained from the
lower-order model respectively. The circles and squares denote the primary and secondary
equilibrium states obtained from the FEA. These arches can be classified into three groups. For
the first group (Figure 8a and 8b), one pair of limit points exists on the equilibrium path. The

u(x) = a n sin(nx)
1

¥

å , u0 (x) = b n sin(nx)
1

¥

å , q = qn sin(nx )
1

¥

å , (26)

qn =
2
p

qd (x -
p
2

)sin(nx)dx
0

p

ò (27)

q2 i-1 = (-1) il i = 1,2,...

q2 i = 0 i = 1,2,...
(28)

a n ,tt + (a n - b n )n 4 + pn 2a n = qn , n = 1,2,... (29)
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arches with these two rises exhibit limit point buckling and the limit point buckling load will be
used for scaling the dynamic forcing amplitude. For the second group (Figure 8c and 8d), one
pair of bifurcated path exists after the first limit point. The arches in this case still exhibit limit
point buckling. For the third group (Figure 8e and 8f), the bifurcation buckling occurs before the
first limit point, and the bifurcation buckling loads will be used for the scaling.

(a) (b) (c)

(d) (e)
(f)

Figure 8. Equilibrium paths of half-sine arches with six different rises: (a) h=2.67, (b) h=3.33, (c) h=4.27, (d)
h=4.53, (e) h=5.20, (f) h=5.60.

Figure 9 shows the linear natural frequencies of the first symmetric and asymmetric modes of
half-sine arches with different initial rises. The solid and dashed lines represent the frequencies
of the first symmetric and asymmetric modes for different rises obtained from the lower order
model. The square makers denote the frequencies obtained from the finite element analysis for
the six rises just discussed (h=2.67, 3.33, 4.27, 4.53, 5.20 and 5.60). It can be observed that the
frequency of the first symmetric mode ( 1symw ) is much smaller than the frequency of the first
asymmetric mode ( 1asymw ) for very small rises. When the rise of the arch becomes larger, the
frequency of the first symmetric mode ( 1symw ) also becomes larger, but the frequency of the first
asymmetric mode ( 1asymw ) barely changes. The frequencies of the first symmetric mode ( 1symw )
will be used for scaling the excitation forcing frequencies.
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Figure 9. Linear natural frequencies of the first symmetric and asymmetric modes of half-sine arches with
different initial rises

In the transient analysis, the harmonic load )sin()( wttl P=  is considered. Here, P  is the
forcing amplitude and w  is the forcing frequency. Since interest is focused on the cases that the
dynamic snap-through load is smaller than the static buckling load, the forcing amplitude P  is
varied from 0 to the static buckling load. The forcing frequency is chosen between 0 and the
value where the dynamic buckling load equals to the static buckling load.

The scaled snap-through boundaries of these half-sine arches are shown in Figure 10. It can be
seen that all these snap-through boundaries have a very similar V shape with zigzags in certain
frequency ranges. For a very low forcing frequency (close to zero), the scaled dynamic buckling
load is equal to one, which is as expected since the dynamic effect in this case is very small and
the dynamic buckling load should be equal to the static buckling load. It can also be identified
that the lowest scaled dynamic buckling loads of all arches appear at almost the same scaled
frequency that is smaller than one. This indicates that these shallow arches have a softening
nonlinearity with respect to the first symmetric mode, which is also as expected. Moreover, all
these snap-through boundaries after scaling almost exactly overlap. With this finding, the snap-
through boundaries of half-sine arches with other rises within the range 60.567.2 ££ h  can be
quickly estimated from any one of these available boundaries without running any additional
transient simulation.
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Figure 10. Scaled snap-through boundaries of six half-sine arches

2.2.3 Parabolic Arches
For a parabolic arch with an initial rise h, the mode coefficients of the initial configuration are as
follows:

Figure 11 shows the equilibrium states of six parabolic arches with different rises (h=2.63, 3.31,
4.37, 4.75, 5.65 and 6.17). The solid and dashed curves represent the primary and secondary
equilibrium states obtained from the lower-order model respectively. The circles and squares
denote the primary and secondary equilibrium states obtained from the FEA. The parabolic arch
(Figure 11) has similar buckling behavior as those of the half-sine arch (Figure 8).

b( 2 i-1) =
32h

p 3 (2i -1)3 , i = 1,2,3...

b 2 i = 0, i = 1,2,3...
(30)
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(a) (b)
(c)

(d) (e)
(f)

Figure 11. Equilibrium paths of parabolic arches with six different rises: (a) h=2.63, (b) h=3.31, (c) h=4.37, (d)
h=4.75, (e) h=5.65, (f) h=6.17.

Utilizing the same scaling approach, the scaled snap-through boundaries of these parabolic
arches are shown in Figure 12. These scaled snap-through boundaries can again approximate
each other.

Figure 12. Scaled snap-through boundaries of parabolic arches
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2.2.4 Cylindrical Panels
In this section, the proposed scaling approach is applied to cylindrical panels that have higher
dimensions than arches. The cylindrical panel considered here is subjected to a uniformly
distributed load in the vertical direction. The two straight longitudinal edges are simply
supported and the two curved circumferential ages are free. The material and geometric
parameters are shown in Figure 13.

Figure 13. The cylindrical panel

Figure 14 shows the equilibrium paths of four cylindrical panels with different rises. The black
solid line represents the primary equilibrium states. The circle markers denote the limit points
while other three types of markers represent the bifurcated equilibrium paths. Unlike the shallow
arch, cylindrical panels have two more bifurcated equilibrium paths whose corresponding
bifurcation buckling mode shapes are shown in Figure 14d.
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(a) (b)

(c) (d)
Figure 14. Equilibrium paths of cylindrical panels with four different rises: (a) H=5.08 mm, (b) H=6.86 mm, (c)
H=7.75 mm, (d) H=9.78 mm.

Utilizing the same scaling method, the scaled snap-through boundaries of cylindrical panels with
four different initial rises are shown in Figure 15. These scaled boundaries are again
approximately the same. Moreover, it can be seen that the scaled snap-through boundaries of the
cylindrical panels are also similar to the boundaries of the half-sine or parabolic arches.
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Figure 15. Scaled snap-through boundaries of four different cylindrical panels

Figure 16 shows all scaled snap-through boundaries of these curved structures discussed. The
black, red and blue lines represent the boundaries of half-sine arches, parabolic arches, and
cylindrical panels respectively. It can be seen that all these boundaries can approximate each
other, especially for the forcing frequencies that are smaller than the dominant resonance
frequency. This useful identification indicates that the snap-through boundaries of cylindrical
panels can be estimated from the boundaries of shallow arches, which usually require much less
computational costs than performing that calculation for a panel.

Figure 16. All scaled snap-through boundaries
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3 SUMMARY

The work summarized in this final report has two main components:

(1) An analytical method is proposed to study the nonlinear static stability and remote
unconnected equilibria of shallow arches with geometric imperfections. The exact
solutions of the equilibria and critical loads are obtained. Unlike many previous studies,
these solutions can be applied to arbitrary shallow arches with arbitrary geometric
imperfections. It is found that slightly imperfect arches have multiple remote
unconnected equilibria that cannot be obtained in experiments or using finite element
simulations if a proper perturbation is not performed. The formulas to directly calculate
the critical loads are also derived.

(2) An efficient alternative is presented to quickly determine the dynamic snap-through
boundaries of slender curved structures with different geometries, shapes and types. A
simple scaling approach is proposed and it identifies very useful similarities of different
dynamic snap-through boundaries. With these identified features, other snap-through
boundaries of similar structures with different geometries or even the boundaries of
different types of structures can be quickly estimated without running any additional
transient simulations.
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